역함수의 미분 가능성은 원래 함수가 미분 가능하면서 원래 함수에 대한 역함수가 존재하고 그 역함수가 연속이라는 것을 전제로 주어진다. 마찬가지로 매개변수 함수의 미분 가능성도 각 변수에 대한 역함수가 존재하면서 그 역함수의 연속성을 전제로 얻어진다는 것을 이해해야 한다. 논술 답안을 작성할 때 이 점을 명확히 언급하면 더 좋은 점수를 받을 수 있다.
☞ 포인트
역함수 문제가 출제되면 대개 정답률이 낮다. 내용이 어렵지는 않지만 변수가 서로 뒤바뀌는 문제를 모호하고 불확실하게 처리하여 답안이 명확하게 작성되지 않는 경우가 많기 때문이다. 따라서 역함수 문제가 출제되는 경우 대체로 변별력이 높은 편이다. 역함수는 정의역과 공역이 역할을 바꾸었을 때도 함수가 돼야 하므로 원래의 함수가 1 대 1 대응일 때 역함수가 존재한다. 이 사실을 명확히 숙지하면서 바뀐 변수와 이전 변수를 혼동하지만 않으면 언제나 올바른 결과를 쉽게 얻을 수 있다. 지면의 예시답안을 참고해 관련 개념을 잘 정리한다면 역함수 문제는 수리논술에서 확실하게 점수를 얻을 수 있는 전략적 유형의 하나가 될 수 있을 것이다.관련뉴스